Trigonometric Multiple Orthogonal Polynomials of Semi-integer Degree and the Corresponding Quadrature Formulas
نویسندگان
چکیده
Abstract. An optimal set of quadrature formulas with an odd number of nodes for trigonometric polynomials in Borges’ sense [Numer. Math. 67 (1994), 271–288], as well as trigonometric multiple orthogonal polynomials of semi-integer degree are defined and studied. The main properties of such a kind of orthogonality are proved. Also, an optimal set of quadrature rules is characterized by trigonometric multiple orthogonal polynomials of semiinteger degree. Finally, theoretical results are illustrated by some numerical examples.
منابع مشابه
Trigonometric Orthogonal Systems and Quadrature Formulae with Maximal Trigonometric Degree of Exactness
Turetzkii [Uchenye Zapiski, Vypusk 1 (149) (1959), 31–55, (English translation in East J. Approx. 11 (2005) 337–359)] considered quadrature rules of interpolatory type with simple nodes, with maximal trigonometric degree of exactness. For that purpose Turetzkii made use of orthogonal trigonometric polynomials of semi–integer degree. Ghizzeti and Ossicini [Quadrature Formulae, Academie-Verlag, B...
متن کاملExplicit formulas for five-term recurrence coefficients of orthogonal trigonometric polynomials of semi-integer degree
Orthogonal systems of trigonometric polynomials of semi-integer degree with respect to a weight function w(x) on [0, 2π) have been considered firstly by Turetzkii in [Uchenye Zapiski, Vypusk 1(149) (1959), 31–55, (translation in English in East J. Approx. 11 (2005) 337–359)]. It is proved that such orthogonal trigonometric polynomials of semi-integer degree satisfy five-term recurrence relation...
متن کاملPositive trigonometric quadrature formulas and quadrature on the unit circle
We give several descriptions of positive quadrature formulas which are exact for trigonometric-, respectively, Laurent polynomials of degree less or equal to n − 1 − m, 0 ≤ m ≤ n − 1. A complete and simple description is obtained with the help of orthogonal polynomials on the unit circle. In particular it is shown that the nodes polynomial can be generated by a simple recurrence relation. As a ...
متن کاملKronrod extensions with multiple nodes of quadrature formulas for Fourier coefficients
We continue with analyzing quadrature formulas of high degree of precision for computing the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials, started recently by Bojanov and Petrova [Quadrature formulae for Fourier coefficients, J. Comput. Appl. Math. 231 (2009), 378–391] and we extend their results. Construction of new Gaussian quadrature form...
متن کاملNumerical quadratures and orthogonal polynomials
Orthogonal polynomials of different kinds as the basic tools play very important role in construction and analysis of quadrature formulas of maximal and nearly maximal algebraic degree of exactness. In this survey paper we give an account on some important connections between orthogonal polynomials and Gaussian quadratures, as well as several types of generalized orthogonal polynomials and corr...
متن کامل